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Abstraet-A method is presented for the investigation of certain two-dimensional siAgular integrals,
frequently accounted in the three-dimensional theory of elasticity. The involved singularity in these
integrals was reduced to a complex singularity!3}. The validity of the method was proved in typical cases of
three-dimensional elasticity.

I. INTRODUCTION

A method is presented for the investigation of.certain two-dimensional singular integrals which
are frequently accounted in the three-dimensional stress analysis when the range of integration
is a plane region[l]. First, it may be observed that the principal values of the related singular
integrals remain the same, regardless of the shape of two types of infinitesimal surfaces, that is
the quadrangular and the circular, which are surrounding the existing poles and which must be
excluded in order to define the integrals. Based on this fact, we considered the two-dimensional
integral as an iterated one [2] and we succeeded to analyze the involved singularity into a pair of
complex poles{3]. Thus, we derived a general relation for the investigation of the related
singular integrals. Furthermore, by applying this method we succeeded to evaluate directly and
in a closed form certain typical integrals, which were previously investigated by Cruse{1] in a
different, less general, way. The observed coincidence of the results indicates the validity of the
method. The generality of the method as far as its numerical applications are concerned, is also
examined [4].

2. FORMULATION OF THE PROBLEM

Consider the two-dimensional singular integral{5] on a plane finite or infinite region S:

(1)

where

(2)

The point x(fo,11o) is called the pole, the functions {(fo, 110, ti) and u(f,11) are called the
characteristic and the density of the singular integral (1). Under the assumptions that (i) tbe
density u(~, 11) is bounded and Holder continuous function in S, (ii) if S has points at infinity
u(~, 11) =O(r-k

) (k > 0), and (iii) tile characteristic f(~o, 1/0, it) is bounded and for a fixed x(~o, 1/0)
is continuous with respect to ti, Tricomi[6] showed that the necessary and sufficient condition
for the existence of the singular integral (I) in the principal value sense is that its characteristic
satisfies the condition:

(3)

Integrals of the form (I) are frequently encountered in the three-dime~sional theory of
elasticity[l], where (when the range of integration is plane) regardless of the problem the
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following form of characteristic [tla) is derived [71:

o 0
o 0

cos it sin {;

-cos it
-sinD'

o
(4)

where 1= - [(1- 2v)/81T(I- v)], v is Poisson's ratio. It is observed that the function hlit)
satisfies the condition (3). Thus the singular integral (I) exists in the principal value sense.

EVldently, the difficulties in evaluating (l) are due to its singularity at r =0. Far from the
vicinity of this point it generally behaves like a regular integral. Thus (1) is to be evaluated in
the Cauchy principal value sense which means that an infinitesimal region surrounding the
singular point is to be excluded and the limiting value of the integral is to be considered as' that
region shrinks toward a zero area. The following theorem is valid.

Theorem: The principal value of the integral (1) with a characteristic of the form (4) remains
the same, if the shape of the excluded area surrounding the pole x ;s circular or.quadrangular.

In order to prove this theorem, let us consider an arbitrary shaped region (IE surrounding the
pole x. supposing that the diameter of this region tends to zero together with E. Then the
principal value of (I) is given by [7]:

(5)

with

(6)

where r = a(€. ~o. 110. it) is the equation of the boundary of the region UE" It is obvious that the
value of the second integral on the right of (5) dePellds upon the shape of the region U E

surrounding the pole x.
Let us consider the local coordinate system ~, fl. { with origin at x and the {-axis along

the normal to the plane S at x Fig. l. If Ue is considered as the circular region Ke• then eqn (5)
may be rewritten as:

(7)

If the region O'E coincides with the quadrangle TE of Fig. 1, then the followmg r~lation is valid:

Is = lim ( IUo, ~o. it) u(~. 7]) d~ d." ==1j(~(), ~O, tlo}u('. '1)d~ d7]-
,-to JS-T. r s

- uUo. 710) [+"."" f(~O.1JOl~) In I3T,<~o, 7]0, t1)dtt. (8)

The singular integral over the area TE - KE (the shaded area) is evaluated as

(9)
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Fig. 1. Geometry of the square and the circle used in the definition of principal value integrals.

Because of the symmetry of the quadrangle and the validity of the following relation for the
characteristic (4)

(10)

the last integral (9) vanishes. Thus

(It)

and the proof is completed.

3. THE PRINCIPAL VALUE OF THE INTEGRAL

If we suppose that the characteristic [(eo, 1)0' -it) is of the form (4), we can consider the
integral (1) as an iterated one [2], analysing the involved singularity into a pair of complex poles,
the influence of which can be estimated either in closed form or numerically in [3]. The idea of
subtracting a quadrangle instead of a circular disk becomes now useful because with the aid of
this idea the limits of integration of the involved definite integrals are now estimated directly.
We suppose for simplicity that the region of integration is a square (with side length 2a).
Generally it is valid that:

(12)

With the aid of this relation, the principal value of integral (1) may be expressed as

where

II =f'llo-- [(eo, 710, -it)u(e, '7> d:rz + f.a [(eo, 710, -it)u(e, 11) d1),
-a 1)-Z 'Ilo+. 71- Z

1
2

= f"0
-. [(eo.11ot -it)U~e, 71) dl1 + fa [(eo. 111), -it)u~f, 71) d1),

-a 1) - Z 110+. 71 - Z

Z = 710 + i(e - eo).

(13)

(14)

(15)

(16)

The extended application of eqn (13) is discussed completely in a separate paper[4]. The
importance of it is based on the fact that the integrals II> 12 can be evaluated numerically [3, 8].
Then, by using the theory of one-dimensional singular integral~ [9, 10], a numerical procedure is
established for the two-dimensional singular integral (13). In (4] we are proposing the cal­
culation of a set of points on which the numerical integration of a singular integral is performed
in the same manner as for a common integral.
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4, APPLICATION OF THE SUGGESTED METHOD

There are few examples[l, 11] where an exact determination (in closed form) of the Cauchy
principal value of certain two-dimensional singular integrals is given; Cruse(l], using a form of
Stokes' theorem succeeds to reduce the surface integral into a line integral (over the contour of
the range of integration (which is usually considered as a triangle) and thus he succeeds to
evaluate the integral directly. Furthermore, it is obvious that the method of Cruse is not a
general one and therefore it can not be considered as a method of evaluating any two­
dimensional singular integral. However, this method offers the possibility to compare our
general method in the special cases already solved by Cruse. Thus, using Stokes' theorem over
the quadrangle of Fig. 2, for the two dimensional singular integral 13 we obtain:

(17)

Observing that the characteristic of 13 is an element of the matrix (4) and the condition (3) for
the existence of the integral is satisfied, we calculate it directly using the suggested method and
we find that

1 = In (a -110 + v[(a + ~of + (0: -110)2])

-In (- (a + 110) + v((a + ~0)2 + (a + 110)2])

+In (- (0: + 110) +V[(o: - ~0)2 + (0: + 110)2])

-In (0: - 110 + V(o: - ~o}2 + (a -110)2])

-In [(0: -7]0+ rd(-o: -110+ rA)]
- (-0: -110+ rD)(O: -110+ rB)

(18)

Thus, we have derived the same result as in (17). This coincidence of results proves the validity
and efficiency of the method. The same results can be obtained by the use of polar coordinates
as described in [12]. Furthermore, it may be indicated that the suggested method is a general
one since, as was shown in [4], with the aid of this method, the results which are valid for
one-dimensional singular integrals [9, 10] are directly generalized for the case of two-dimen­
sional singular integrals. As a consequence, two-dimensional singular integrals of the form:

I - f w(x, Y, xO, Yo) dx dy
4 - 2 2

S (x - xo) +(y - Yo) ,
(19)

which are widely used in three-dimensional elasticity can be investigated by this method for the
case where w(x, y, xo, Yo) is a weight function compatible with the restrictions assuring the
existence of the Cauchy principal values of integrals.

Fig. 2. Geometry of the domain of integration.
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